
Performance Optimisation of Stencil-Based Codes
for Shared Memory Architectures

Maksims Abaļenkovs
School of Mathematics, The University of Manchester, Manchester M13 9PL, UK, m.abalenkovs@manchester.ac.uk

Abstract—The work presented in this publication proposes a
novel view onto the standard form of Maxwell’s equations in the
FDTD method. The stencil-based equations are cast into a matrix
form. Performance of the matrix casting is further improved by
means of the OpenMP paradigm. Numerical results for both the
sole FDTD and the FDTD with the Huygens Subgridding (HSG)
are analysed.

Index Terms—electromagnetic propagation, numerical simula-
tion, performance analysis, finite difference methods.

I. Introduction

In the world of Computational Electromagnetics the Finite-
Difference Time-Domain (FDTD) method has deserved a lot
of attention due to its straightforward formulation and relative
ease of the implementation. Nowadays the requirement for
higher precision and larger size of the simulated objects
produces a strong motivation for ever increasing performance
of the simulation method. Luckily, the last decades have wit-
nessed a rapid development in the area of CPU architectures.
This work proposes a novel representation of Maxwell’s equa-
tions in terms of matrices, as well as subsequent parallelisation
of the 1D FDTD method by means of OpenMP [1].

II. Mathematical Background

A. Solution of Maxwell’s Equations in the FDTD Method

Maxwell’s curl equations for linear, isotropic, non-
dispersive and lossy materials are expressed as:

ε
∂E

∂t
= ∇×H − J − σE, (1)

µ
∂H

∂t
= −∇×E −K − σ∗H, (2)

where J and K denote the electric and equivalent magnetic
current densities, and σ and σ∗ stand for electric conductivity
and equivalent magnetic loss.

Writing out vector components in Cartesian coordinates,
assuming all partial derivatives with respect to y and z equal
to zero, Maxwell’s equations reduce to x-directed y-polarised
TEM-mode:

∂Ey
∂t

= −1

ε

(
∂Hz

∂x
+ Jsrc, y + σEy

)
, (3)

∂Hz

∂t
= − 1

µ

(
∂Ey
∂x

+Ksrc, z + σ∗Hz

)
. (4)

Using the central difference and central average appro-
ximations for space and time partial derivatives Maxwell’s
equations can be discretised as:

E
n+ 1

2

y(i− 1
2)

= Γ1(i− 1
2)E

n− 1
2

z(i− 1
2)

− Γ2(i− 1
2)

(
Hn
z(i) −H

n
z(i−1)

∆x
+ Jn

src, y(i− 1
2)

)
, (5)

Hn+1
z(i) = Z1(i)H

n
z(i)

− Z2(i)

E
n+ 1

2

y(i+ 1
2)
− En+ 1

2

y(i− 1
2)

∆x
+K

n+ 1
2

src, z(i)

 , (6)

where

Γ1(i−1/2) =
1− σ(i−1/2) ∆t

2 ε(i−1/2)

1 +
σ(i−1/2) ∆t

2 ε(i−1/2)

, Z1(i) =
1− σ∗

(i)∆t

2µ(i)

1 +
σ∗
(i)

∆t

2µ(i)

, (7)

Γ2(i−1/2) =
∆t/ε(i−1/2)

1 +
σ(i−1/2) ∆t

2 ε(i−1/2)

, Z2(i) =
∆t/µ(i)

1 +
σ∗
(i)

∆t

2µ(i)

. (8)

These equations form a foundation of the Yee’s FDTD
method [2] in 1D.

B. Casting Stencil-based Equations into Matrix Form

Shifting electromagnetic field components by − 1
2 in time

and + 1
2 in space, representing electromagnetic field differ-

ences with a symbol ∆ and omitting the electromagnetic
source currents Jnsrc, y,K

n
src, z the 1D FDTD equations be-

come:

Eny(i) = Γ1(i)E
n−1
y(i) − Γ2(i)∆H

n
z(i,i−1)/∆x, (9)

Hn+1
z(i) = Z1(i)H

n
z(i) − Z2(i)∆E

n
y(i+1,i)/∆x. (10)

Careful examination of these equations leads to a realisation
that a 1D FDTD stencil is nothing else as a vector dot product:

u · v =

n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn. (11)

Since most modern CPUs are highly optimised to perform
multiple vector operations at a time, a certain performance
benefit is expected from casting stencil equations into a matrix

form. For example, the 1D FDTD equations cast into the
matrix form become:

Eny =
(
Γ1 −Γ2/∆x

)En−1
y

∆Hn
z

 , (12)

Hn+1
z =

(
Z1 −Z2/∆x

) Hn
z

∆Eny

 . (13)

Space indices in Eqs. (12) and (13) were omitted for clarity.

III. Parallelising Matrix Form Equations with OpenMP

Once the stencil-based equations have been cast into a
matrix form, further performance benefit may be obtained by
delving into the pool of multicore resources of modern CPUs.
This work focuses on the performance optimisation by means
of the OpenMP paradigm.

Fig. 1 gives an example of five different ways to calculate
the electric field Ey across a 1D domain stretching from i ∈
[imin, imax]. Four approaches are incorporated into the $omp

parallel do pragma and the last option is contained within
the $omp parallel workshare pragma. Only one approach is
necessary to calculate the field values Ey in the practical
FDTD implementation. Each computation approach is denoted
by an abbreviation shown in the comment line: “func” uses a
standard stencil function, “dotp” uses Fortran intrinsic function
dot_product, “ddot” relies on the BLAS Level 1 function
ddot [3]. Words “jit” and “pre” mark, whether the approach
uses just-in-time calculation or pre-computed values of the
coefficients Γ{1, 2} and magnetic field difference ∆Hz .

Parallelisation of the magnetic field calculation routines is
identical. It is not shown here for the sake of brevity.

IV. Numerical Results

A. Experiment Setup

To test the performance benefit of equation casting in terms
of execution time, CPU load and maximum memory usage
two sets of experiments were run: on standard FDTD method
and on the FDTD with HSG. All experiments were run in 1D.

Subgridding is an approach of embedding multiple FDTD
domains with different spatio-temporal increments ∆t,∆x
into each other. This can be extremely useful for large-scale
simulations incorporating fine geometrical features such as the
human heart response to a defibrillator current in a context of
the entire human body [4]. A subgrid—domain with small
∆t,∆x will be placed around the fine geometry (the heart),
while the main grid with large ∆t,∆x will provide the
large-scale context (the body). Usually, the interdependence of
spatio-temporal increments in a subgridding method is defined
by a subgridding ratio. In HSG it is defined as r = ∆ta/∆tb =
∆xa/∆xb. More information on the operation of the HSG can
be found in [5].

Fig. 2 presents the experiment setup in detail. Top axis
denoted xa shows the propagation environment setting in the

!$omp parallel do

do i = imin, imax

! expl jit

Ey(i) = G(enc(i),1)*Ey(i) - G(enc(i),2)*(Hz(i+1)-Hz(i))/dx

! func jit

Ey(i) = calc_E(G(enc(i),1), Ey(i), &

G(enc(i),2), Hz(i+1), Hz(i), dx)

! dotp jit

Ey(i) = dot_product([G(enc(i),1), -G(enc(i),2)/dx], &

[Ey(i), Hz(i+1)-Hz(i)])

! ddot jit

Ey(i) = ddot(2, [G(enc(i),1), -G(enc(i),2)/dx], 1, &

[Ey(i), Hz(i+1)-Hz(i)], 1)

end do

!$omp end parallel do

Fig. 1. Fortran code with OpenMP pragmas

OS

xb

xa45 653525 1005550

135 165150

IS IS

OS

c

d

Fig. 2. HSG scenario setting with r = 3. A unit measurement in the figure
equals to 1000 space steps, e.g. 25 is 25000 ∆xa. Excitation source is marked
with a filled square and the observation points—with filled circles. Distances
c and d are 9∆xb and 5∆xb.

FDTD only experiment or the HSG main grid. The environ-
ment stretches from 1 to 100000 space steps ∆xa. Excitation
source is placed at xa = 25000. Observation points are
located at xa = {35000, 65000}. Bottom axis xb illustrates the
setting of the subgrid, where the radio environment occupies
30000 space steps ∆xb, with xb ∈ [135000, 165000] and the
observation point at xb = 150000. Vertical lines “IS” and
“OS” mark locations of the Inner and Outer Huygens Surfaces.
They are separated with a minimal distance of c = 9∆xb. An
additional buffer zone between the OS and the end of the
simulation domain is d = 5∆xb long. The simulation domain
is terminated with the 1st order Mur’s Absorbing Boundary
Condition (ABC).

Table I specifies the FDTD simulation settings. Parameter
“ni” denotes the size of the simulation domain in a number of
space increments, tmax specifies the total number of time step
iterations, r is the subgridding ratio, “zone” is the buffer zone

added at the end of the subgrid domain, “ISOS” is the distance
between the Inner and Outer Huygens Surfaces, ∆x,∆t are
the spatial and temporal increments, NCFL is the Courant–
Friedrichs–Lewy (CFL) condition number, χ is the spatial
resolution used in the calculation of the FDTD grid space step
and fmax is the maximum wave frequency. Indices a, b denote
the main and the subgrid respectively.

Gaussian pulse was used as the “soft” excitation source in
the experiments:

Jnsrc, y = exp
[
− ({t− 3T}/T)

2
]
, with T = 0.5 f−1

max.

(14)

B. Hardware Platform

Numerical experiments were run on a 32 core Intel Xeon
machine. The full specification of the system is given in Ta-
ble II.

The execution time, CPU load and maximum memory usage
measurements were taken with the GNU time command:

1 time−f "%e %P %Mk"

The source code has been compiled with the Intel Fortran
compiler ifort, version 14.0.0 20130728 and -O3 -qopenmp

flags.

C. Result Analysis

The plot in Fig. 3 compares five different approaches for
parallel computation of electromagnetic fields Ey, Hz in 1D
FDTD. The data along the y-axis is depicted with logarith-
mic scaling. The $omp parallel workshare pragma (sky-blue
line) is not beneficial for parallelisation of an iterative stencil-
based method. The temporal overhead grows with the number
of execution threads. Level 1 BLAS function ddot (purple
line) also did not bring the expected performance boost despite
highly optimised Intel MKL implementation. The three most
high-performing options are based either on a built-in Fortran
intrinsic dot_product or apply a simple stencil function.
Stencil function and dot_product options with just-in-time
calculation of all parameters share comparable results, with
the stencil function slightly outperforming the dot_product

alternative. The best computation variant (green line) is based

TABLE I
Simulation settings

Parameter Main grid xa Subgrid xb

ni 100000 10000 r
tmax 100000 100000 r
r 3, 5, 7, 9, 11
zone 5 ∆xb
ISOS 3 r∆xb
source type soft
source location 25000
∆x 5cm ∆xa/r
∆t 15.51ns ∆ta/r
NCFL 0.93 0.93
χ 20 20 r
fmax 2.997 924 58GHz

1

10

100

1000

0 5 10 15 20 25 30 35

E
x
e

c
u

ti
o

n
 t

im
e

,
t

(s
)

No. of threads, nthr

ddot pre
dotp pre
dotp pre ws
dotp jit
func jit

Fig. 3. No. of OpenMP threads vs execution time

on the dot_product function and uses pre-calculated values
for the coefficients Γ{1, 2}.

The higher is the CPU load shown in Fig. 4 the more
work each CPU performs and the better is the load-balancing.
High CPU load means the processors are occupied and are not
idle. The most time-inefficient code (sky-blue line) based on
the $omp parallel workshare pragma almost fully utilises all
of the processors. The most time-efficient variant “dotp pre”
(green line) also provides very good load-balancing. On the
other hand the “dotp jit” utilises only one half of the CPU
power available. This option might be good for sharing the
CPU resources with the other tasks or programs.

Second set of experiments dealt with the 1D FDTD with
HSG, that is referred to as HSG for convenience. Fig. 5
illustrates the relationship between the subgridding ratio r and
the execution time for a given number of OpenMP threads. As
expected with increase of the subgridding ratio r size of the
subgrid increases and requires more computation time. The
1D HSG code shows good scalability for the given number of
threads—execution time decreases with increase of the number
of computation threads.

Fig. 6 presents the HSG memory consumption for different
subgridding ratios r. Higher subgridding ratio results in a
finer grained subgrid with higher number of computation cells.
Memory consumption grows linearly with the increase of the
parameter r. In this case a higher number of computation

TABLE II
Testing system specification

Parameter Value

Operating System CentOS Linux release 7.2.1511 (Core)
Kernel 3.10.0
CPU Specification Intel Xeon CPU E5-2650, 2.00GHz
L2 Cache Size 20MB
CPU = Sockets × Cores × Threads 32 = 2× 8× 2
Address sizes 46 bits physical, 48 bits virtual
Memory, total 64GB

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

C
P

U
 l
o

a
d

 (
%

)

No. of threads, nthr

ddot pre
dotp pre
dotp pre ws
dotp jit
func jit

Fig. 4. No. of OpenMP threads vs CPU load

10

100

1000

0 5 10 15 20 25 30 35

E
x
e

c
u

ti
o

n
 t

im
e

,
t

(s
)

No. of threads, nthr

r = 3
r = 5
r = 7
r = 9
r = 11

Fig. 5. No. of OpenMP threads vs execution time in 1D HSG for various
r ∈ [3, 11]

threads creates a slight memory overhead of ≈ 1 MB.

V. Conclusion

Casting of FDTD equations into a matrix form has been
proposed. Five different approaches for parallelisation of
electromagnetic field calculation in the 1D FDTD method
were compared. The casting and OpenMP parallelisation have
proven to be beneficial in terms of performance. The best
variant “dotp pre” with minimal execution time and high CPU
load is based on the $omp parallel do pragma, uses Fortran
intrinsic function dot_product and pre-computed values of the
coefficients Γ{1, 2}, Z{1, 2}.

HSG experiments have shown a good scalability of the
source code, linear growth of the memory consumption with
the growth of the subgridding ratio r and a slight memory
overhead due to the OpenMP thread management.

19

20

21

22

23

24

25

26

27

28

0 5 10 15 20 25 30 35

M
a

x
.

m
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

No. of threads, nthr

r = 3
r = 5
r = 7
r = 9
r = 11

Fig. 6. No. of OpenMP threads vs max. memory usage in 1D HSG code
with r ∈ [3, 11]

VI. Future work

It is expected that equation casting into matrix form will
bring even more performance benefit in 2D and 3D versions
of the FDTD method. The work is underway to test this
hypothesis. Another expectation is that the casting can be
easily expanded to the other stencil-based methods from other
scientific domains such as for example Lattice Boltzmann and
Crank–Nicolson methods. Other parallelisation platforms such
as NVIDIA CUDA and OpenCL can also benefit from the
matrix casting. Finally, a multitude of small matrix–matrix
operations resulting from equation casting presents a perfect
case for testing the Batched BLAS library.

Acknowledgements

The author would like to thank Professor Jack Dongarra
for his commentary onto casting of the FDTD equations into
matrix form.

This work has been funded by the EPSRC grant for the
Scale-free, Energy-aware, Resilient and Transparent Adapta-
tion (SERT) project (reference number EP/M01147X/1).

References
[1] OpenMP 4.5 Specifications, Std., Accessed on Oct 13, 2017. [Online].

Available: http://www.openmp.org/mp-documents/openmp-4.5.pdf
[2] K. S. Yee, “Numerical solution of initial boundary value problems

involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. 14, no. 3, pp. 302–307, May 1966.

[3] BLAS (Basic Linear Algebra Subprograms). Accessed on Oct 13, 2017.
[Online]. Available: http://www.netlib.org/blas

[4] M. Abaļenkovs, F. Costen, J.-P. Bérenger, R. Himeno, H. Yokota, and
M. Fujii, “Huygens subgridding for 3-D frequency-dependent Finite-
Difference Time-Domain method,” IEEE Trans. Antennas Propag.,
vol. 60, no. 9, pp. 4336–4344, Sep. 2012.

[5] J.-P. Bérenger, “The Huygens subgridding for the numerical solution of
the Maxwell equations,” Journal of Computational Physics, vol. 230, pp.
5635–5659, 2011.

