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Introduction
• Building prototypes to verify electromagnetic (EM) characteristics of an object is expensive.
• Engineers use numerical methods to simulate EM wave propagation on computers.
• Finite-Difference Time-Domain (FDTD) is one of widely applied numerical schemes to

approximate Maxwell’s Equations.

Motivation
•Current electromagnetic problems are characterised by:

– large problem size
– fine geometry
– variety of dielectric materials.

Research Objective and Focus
• Provide an efficient Maxwell’s Equations solver capable of incorporating dielectric material

properties and fine object geometry.
• This project focuses on:

– Huygens Subgridding (HSG) application to increase computational efficiency of FDTD
– Filtering to suppress late-time instabilities of HSG.

Huygens Subgridding Principles
Huygens Subgridding is a novel algorithm with the following unique properties [1]:
• Interface is implemented via Huygens Surfaces and produces little reflection.
• Influence from coarse to fine (a→ b) and fine to coarse (b→ a) grid is passed with

equivalent currents.
• Temporal advancement scheme is the synchronised multistep: ∆ta = r∆tb.

• Subgridding ratios for spatial and temporal domains are equal: r = ∆sa
∆sb

= ∆ta
∆tb

.
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Figure 1: HSG Inner and Outer Surfaces. HSG decomposes the simulation space into
subspaces (Xa, Xb)—coarse and fine grids. Non-working regions (d, b, f ) exert no influence
on the simulation result. Equivalent currents pass electromagnetic energy from coarse to
fine grid (Inner Huygens Surface IL, IR, red arrows) and fine to coarse grid (Outer Huygens
Surface OL, OR, blue arrows).

1: calc Ha(∗)
2: calc Ha(interface)
3: calc Eb(∗)
4: infl IS : Ha(IS)→ Eb(IS)
5: calc Gb(∗)
6: for each time step tb1 ∈ [1, q] do
7: calc Hb(∗)
8: infl IS : Ea(IS)→ Hb(IS)
9: calc Eb(∗)

10: infl IS : Ha(IS)→ Eb(IS)
11: calc Gb(∗)
12: end for

13: infl OS : Eb(OS)→ Ha(OS)

14: calc Ea(∗,src)
15: calc Ea(interface)
16: calc Ga(∗)
17: calc Hb(∗)
18: infl IS : Ea(IS)→ Hb(IS)

19: for each time step tb2 ∈ [1, q] do
20: calc Eb(∗)
21: infl IS : Ha(IS)→ Eb(IS)
22: calc Gb(∗)
23: calc Hb(∗)
24: infl IS : Ea(IS)→ Hb(IS)
25: end for

26: infl OS : Hb(OS)→ Ea(OS)

Algorithm 1: HSG Pseudocode. Algorithm consists of two symmetric parts. Electric and
magnetic fields are denoted as E,H and polarisation currents as G. Subscript in parenthe-
ses specifies the field location: “*” stands for the entire space. Inner and Outer Surface
influences are denoted as IS, OS and marked with colours.

Filtering
• All HSG simulations suffer from instabilities [2].
• Frequency of instability equals to transition frequency of travelling to evanescent waves:

ftran =
1

π∆t
arcsin

(
c∆t

∆x

)
. (1)

• Filters absorb instable frequencies finst and preserve the frequencies of interest f.
• Filters work as averaging functions and are applied to equivalent currents in IS:

Ea(IS) =
Ea(IS−1) + Ea(IS)

2
=

1

2
Ea(IS−1) +

1

2
Ea(IS). (2)

•Mathematical equivalent to averaging is a cosine filter:

F1(kx) =
exp (kx∆xa) + 1

2
= exp

(
kx∆xa

2

)
cos

(
kx∆xa

2

)
. (3)
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Figure 2: Single Point Filtering. This Figure shows an interpolation process with Filter 33.
Target point is located in the middle of the cube. Interpolation consists of three phases (from
left to right): (i) volume to plane, (ii) plane to line and (iii) line to point reduction. Participating
geometric elements are marked with colours, where the target object is red.

Filter Performance
•One- and three-dimensional (1D, 3D) filters of orders 1, 3, 5 were implemented.

• All filters were tested on two verification scenarios:

– vacuum only (100x)
– vacuum, skin, fat, muscle (200x).
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Figure 3: Scenario no. 200x, Setting. Only 1D perspective of the scenario setting is shown.
Four different materials were used in this setting: vacuum, skin, fat, muscle. Symbols XR and
TR stand for the excitation source and observation locations.
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Figure 4:
(a) 100x, Filter 35, xa = 24. Interpolation coefficients influence filters’ performance.
Heavier central point improves 3D filters’ suppression characteristics.
(b) 100x, Filter 33, xa = 24. Filter 33 exhibits the best instability suppression qualities:
tinst,worst = 5200, tinst,best = 14000 time steps.

Verification Results
•Materials absorb part of the signal and delay the instability occurrence.

•HSG with r = 3 executes 8 times faster than all fine grid FDTD (b).

• Since filtering is done at every time step, it increases the computation time by
4.2% (Filter 15) and 20.5% (Filter 35).

•HSG uses approximately 5.5 times less memory than FDTD (b).

Summary
•HSG was successfully applied to FDTD and extended to three dimensions.

•HSG provides an efficient Maxwell’s Equations solver capable of
fine geometry representation.

• Filtering was implemented to suppress late-time instabilities of HSG.

• Filter 33 shows the best instability suppression properties: tinst,worst = 5200 time steps.

• Future work will focus on HSG parallelisation and further improvement of HSG stability.

Bibliography
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