
Data Format Selection for an I/O-intensive large-scale FDTD

Maksims Abaļenkovs1, Fumie Costen1, Craig Lucas2, and Anthony Brown1

1 School of Electrical and Electronic Engineering,
2 Research Computing Services, The University of Manchester, U.K.

Introduction

The development of Ultra Wide Band (UWB) systems requires numerical simulation to
examine the waveform distortion in the time domain during propagation in a wide range
of dispersive media. Finite Difference Time Domain (FDTD) methods are the most suit-
able for UWB system modelling, offering the capability of analysing arbitrarily-complex,
wideband problems. The main difficulties in use of FDTD are the long execution time
and high memory requirements when the simulation contains geometrical features that are
electrically-small relative to a large physical space. One of the approaches to tackle these
problems is the parallelisation of FDTD. The standard explicit FDTD is inherently highly
parallelisable on distributed memory architectures. It is adaptable even when bandwidth be-
tween Processor Elements (PEs) is not dedicated for computation. This holds because the
communication time is small relative to the computation time for the large FDTD space.
However, with the performance improvement of CPU and memory, the data file production
of the large scale FDTD simulation dominate the total elapsed time. This paper discusses
possible approaches to the reduction of the data Input/Output (I/O) time from the perspec-
tive of the computational environment and the output format. This work also provides a
guideline on the appropriate data format, depending on the computational environment, the
size of the FDTD space and amount of the data required.

Methods to Improve I/O Performance

Given the weak I/O performance of the currently available High Performance Computing
(HPC) environments relative to the performance of CPU and memory, the simulation time
for an I/O-intensive large-scale FDTD is mainly spent on the data file production [1] in or-
der to detail the wave propagation at each FDTD grid at each time step. Identical problems
are experienced by other scientific numerical simulations such as [2]. One of the promising
exercises to improve I/O performance is the adoption of a high-level I/O library for a sci-
entific data format built on top of the Message Passing Interface (MPI) - IO interface such
as ROMIO [3] configured to operate on top of Parallel File Systems (PFS) or the Parallel
Virtual File System (PVFS) [4] which provides a high performance I/O infrastructure [5].
Similar approach has been taken by other works such as [6]. Although PVFS seems to
provide the most appropriate computational environment for the I/O-intensive FDTD sim-
ulation, the HPC facilities, to which the authors have had an access, do not have local disks
dedicated to each PE for data storage, PVFS nor ROMIO. Without PFS, the data production
onto the shared disk by each client causes significant load-imbalance. Under the given com-
putational environment available to the authors, the in-house FDTD code is re-implemented
so that only one I/O server can produce output data. This approach achieves high scalability
and is portable to any HPC system with weak I/O. However, the total elapsed time signifi-
cantly varies depending on the data format. Therefore this paper assesses Hierarchical Data
Format (HDF5) as a scientific data format among others due to its high flexibility in data



storage and manipulation. This work also discusses the HDF5 merit over ASCII and binary
formats which are commonly used in Computational Electromagnetics.

Computational environment

Many wide-access Beowulf clusters do not have scientific format libraries installed. The
clusters accessible to the authors did not have HDF5 installed. Therefore the experiments
are performed in the local cluster. 2ne Processor Elements (PE) are used for FDTD cal-
culation where ne is the integer from 0 to 3. 23 PEs are composed of 2 single core AMD
Athlon 64 4000+ and 3 dual core 4200+. Each node equips 4GB of memory and is con-
nected with the Gigabit Ethernet to a Gigabit switch. Each PE computes the FDTD space
of Nx × Ny × Nz grid points. Since each core in the dual core node has only 2 GB of
memory, FDTD subspace greater than 2003 grids is not allocated to a single PE to avoid
the usage of the swap region. Therefore, the value of Nx = Ny = Nz is varied from 30 to
190 with the increment of 10. The number of grids at interface of PEs is set to Nx × Ny

for all numerical experiments. Thus 2ne PEs accommodate Nx ×Ny × (Nz × 2ne) FDTD
grids in total. The point source excitation is placed at the centre of the first FDTD subspace.
The 6 fields of Ex, Ey, Ez , Hx, Hy and Hz at each FDTD grid point are outputted together
with the Cartesian coordinate at each time step upto 10 time steps. One output file holds the
entire data from one PE. The 3D dataspace and 1D array of 6 elements are used for storing
the simulation data in HDF5 files. The data in a file is chunked and shuffled to enable the
zlib compression. An intermediate I/O-buffer keeps the entire dataset processed by a single
PE before saving the data to a file.

Result Analysis

The FDTD calculation is composed of computation, communication and datafile produc-
tion. The computation time is accumulated for 10 time steps at each PE. The standard
deviation of the computation time of 2ne PEs is under 10 percent of the average compu-
tation time. The highest computation time among ones from 2ne PEs is used as a total
computation time of the calculation for 10 time steps. The time to communicate the field
values at the interface between PEs is about 1/6 of computation time, independent of the
size of the FDTD space allocated to each PE. An FDTD computation setting is used three
times to produce data in ASCII, binary and HDF5 formats. One computation is dedicated to
one of these formats. Symbols ×, +, ∗, and 2 in Figure 1 show the measured time spent for
the HDF5 data production using 2ne PEs with ne = 0, 1, 2, 3, respectively. As is seen, the
measured time is the function of the FDTD grids allocated to each PE and the total number
of PEs. The data fitting is performed for a fixed number of PEs as follows: first, the Bezier
smoothing noted as Bez

(
ne, N

3
x

)
is applied to the measured data. Secondly the data fitting

noted as F
(
ne, N

3
x

)
is performed to the Bezier curve. Four curves in Figure 1 are defined

by the function F
(
ne, N

3
x

)
for the different number of PEs 2ne . The accuracy of the data

fitting is calculated as

(
1

4 · 17
∑
ne

∑
N3

x

(
F
(
ne, N

3
x

)
−Bez

(
ne, N

3
x

)
Bez (ne, N3

x)

)2
) 1

2

and error rate

of 8 % is obtained from Figure 1. This function is used to estimate the HDF5 data produc-
tion time for 24 PEs and 28 PEs which is presented in Figure 2. Similar data fitting is carried
out to the measured time to produce data in ASCII and binary formats. These two cases



FDTD space size [×107 grid points]

T
ot

al
ou

tp
u
t

ti
m

e
[s

ec
on

d
]

HDF5, 20 PE

HDF5, 21 PE

HDF5, 22 PE

HDF5, 23 PE

HDF5, 20 PE

HDF5, 21 PE

HDF5, 22 PE

HDF5, 23 PE

raw data

fitting

1 2 3 4 50
0

100

200

300

400

500

600

700

Figure 1: Data fitting

FDTD space size [grid points]

T
ot

al
ou

tp
u
t

ti
m

e
[s

ec
on

d
]

103 105 107 109

100

102

104

10−2

HDF5
20 PE

HDF5
24 PE

HDF5
28 PE

Figure 2: Time for HDF5 data production

103 105 107 109

100

102

104

10−2

ASCII

bin
ary

computation time
for 10 time steps

FDTD space size [grid points]

T
ot

al
ou

tp
u
t

ti
m

e
[s

ec
on

d
]

Figure 3: Time for data production in
ASCII and binary

103 105 107 109

T
ot

al
fil

e
si

ze
[G

B
]

100

103

10−3

10−6

ASCII binary HDF5

FDTD space size [grid points]

Figure 4: File size in various output formats

Total file size in ASCII [GB]

O
u
tp

u
t

ti
m

e
re

la
ti

ve
to

A
S
C

II

HDF5
20 PE

HDF5
24 PE

HDF5
28 PE

binary

10310010−3

100

10−1

Figure 5: Ratio of data production time
compared with ASCII format



are the function of N3
x exclusively and the fitted curves are shown in Figure 3 together with

the computation time for 10 time steps as a reference. The amount of data produced from
each output format is plotted in Figure 4. Figure 2 and Figure 4 tell that HDF5 datafiles
larger than 1 MB can be efficiently produced as a collection of more than 150 files with the
filesize less than 6 KB whilst HDF5 data smaller than 1 MB should be created as few files
as possible for high efficiency. Using Figure 2 and Figure 3, the time to produce binary data
and HDF5 data relative to the time to produce ASCII data is calculated in Figure 5. Inde-
pendent of the total file size produced, a cluster with less than 24 PEs produces HDF5 data
more slowly than binary data. When more than 24 PEs are available, HDF5 data production
is more efficient than binary data production only when the corresponding data file size in
ASCII is over 1 GB.

Conclusion

One of the bottle-necks of the large-scale FDTD calculation is the data I/O. Although PFS
improves the I/O performance it is not always available. Under the computational environ-
ment without PVFS and local disks for each PE, limitation on the number of nodes which
can produce the output data improves the scalability. HDF5 is compared with the ASCII
format and the binary formats from the perspective of the computational efficiency. It be-
comes clear that HDF5 is beneficial when more than 24 PEs are used and more than 1 GB
of data in ASCII format are produced. The effect of the number of files on the datafile
production time as seen in Figure 2 and Figure 3 is under investigation for the presentation
in the conference. Since it is difficult to install and maintain scientific format libraries, they
are usually not present on wide-access HPC systems. This means high portability of the
code using any scientific format is currently not achievable.

References

[1] R. Maaskant, M. Ivashina, R. Mittra, W. Yu, and N. Huang, “Parallel FDTD modeling
of a focal plane array with vivaldi elements on the highly parallel LOFAR BlueGene/L
Supercomputer,” in IEEE AP-S Int. Symp., 2006.

[2] R. Ross, D. Nurmi, A. Cheng, and M. Zingale, “A case study in application I/O on
Linux clusters,” in Supercomputing, 2001.

[3] R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably and with high
performance,” in Workshop on Input/Output in Parallel and Distributed Systems, 1999,
pp. 23–32.

[4] P. H. Carns, W. B. Ligion, R. B. Ross, and R. Thakur, “PVFS: A parallel file system for
Linux clusters,” in Linux Showcase and Conf., 2000, pp. 317–327.

[5] J. Li, W. Liao, A. Choudhary, and V. Taylor, “I/O analysis and optimization for an AMR
cosmology application,” in IEEE Int. Conf. Cluster Computing, 2002, pp. 119–126.

[6] Y. Chen, J. Nieplocha, I. Foster, and M. Winslett, “Optimizing collective I/O perfor-
mance on parallel computers: A multisystem study,” in Supercomputing, 1997, pp.
28–35.


