
1

Adaptation of HDF5 for
FD-FDTD Data Manipulation Tasks

Maksims Abaļenkovs, Fumie Costen, Anthony K. Brown

Abstract—Building of Vivaldi antenna arrays is a
complicated process. Geometrical and material design
determine the physical antenna characteristics. The nu-
merical simulation of electromagnetic wave propagation
in time domain is often used for the verification of a
Vivaldi antenna structure. Modern implementations of
numerical schemes such as the Frequency Dependent –
Finite Difference Time Domain (FD-FDTD) suffer from
inefficient input/output (I/O) procedures. This research
proposes a novel approach of efficient FD-FDTD output
data production and storage by means of the Hierarchical
Data Format 5 (HDF5).

I. INTRODUCTION

Ultra Wide Band (UWB) is becoming an increas-
ingly popular technology. According to the contem-
porary definition by the Federal Communications
Commission (FCC), an UWB is any signal occupy-
ing 500 MHz within the 3.1 to 10.3 GHz frequency
range. This makes an UWB suitable for application
in areas of vehicular radars, imaging and commu-
nication systems. No carrier is required for UWB
signal propagation. A particularly wide spectrum
results in reduced operating power, low sensitivity
to multipath propagation effects and relatively high
transmission rates of an UWB-based communication
system.

The Finite Difference Time Domain (FDTD) is a
classical numerical scheme for the simulation of the
UWB wave propagation. Being developed by Kane
S. Yee in 1966 it is still the most widely used simula-
tion technique [Yee66]. It has survived a number of
substantial changes and improvements in more than
40 years of application in different research domains.
Equations 1 to 6 describe the general Maxwell’s
equations, which comprise the basis of the FDTD
calculation.

∇ ·D = ρ (1)
∇ ·B = 0 (2)
−∇×E = ∂tB (3)
∇×H = J + ∂tD (4)
D = εE (5)
B = µH (6)

The general idea of the FDTD method lays in the
replacement of derivatives ∂t in Maxwell’s equations

by finite differences. This substitution allows to ob-
tain numerical result for a theoretical electromagnetic
case described by Maxwell’s equations. Recalling the
Taylor series expansion, which states that centred
average av and difference δv operators serve the
second order approximations to the derivatives ∂t,
provides a mathematical mechanism for the FDTD
method.

The FDTD simulation domain is divided into a
number of unitary space elements called the Yee
unit cells. The x, y, z constituents of the electric and
magnetic fields E and H are measured at certain
positions of each Yee cell. Furthermore the entire
set of En

(x,y,z) and Hn
(x,y,z) values of a single Yee

cell is divided into two mutually exclusive subsets
of electromagnetic field values. Where each subset
contains E and H values for the specific unitary cell
locations x, y, z. The FDTD calculation proceeds in
a “leap-frog” manner in time domain. The electro-
magnetic field values comprising the first subset are
calculated at one time step and E and H values,
which belong to another subset, are estimated at the
following time step. The FDTD algorithm performs
in the marching-on-in-time way for the complete
range of the simulation time steps.

Despite of its simplicity and ease of implemen-
tation the original FDTD method has a number of
drawbacks. The most serious one is the algorithm’s
inability to reflect the medium properties wherein the
UWB signal is propagating. A numerical scheme’s
variation called the Frequency Dependent – Finite
Difference Time Domain (FD-FDTD) method was de-
veloped specifically to address this issue. In this case
the source medium responds to the frequency of the
scattered signal. Similarly to the original approach
the medium geometry is specified by the spacial grid.

The main difference of the FD-FDTD is that the
medium permittivity ε is defined at each spacial
location of the simulation grid. The permittivity ε
is set to be dependent on UWB signal’s frequency,
but permeability µ stays constant during the entire
computation process. The medium frequency depen-
dency is achieved by the application of the Debye
model:



2

ε = ε0εr = ε0

(
εs +

εs − ε∞
1 + ωτD

− 
σ

ωε0

)
(7)

To involve the variable medium permittivity in
the computation procedure the displacement vector
Dn

(x,y,z) values have to be calculated along with the
original En

(x,y,z) and Hn
(x,y,z) field parameters. This

is done by replacing the constant permittivity value
in the Eq. 5 by the variable permittivity parameter
obtained from Eq. 7. This puts higher requirements
on the computational resources executing the FD-
FDTD method, but ensures a more realistic simula-
tion producing more precise results.

The initial FD-FDTD method used in the research
group for the simulation of UWB signal propagation
was implemented in 2005 by Arnaud Thiry within
his PhD work [Thi06]. The in-house software was
successfully parallelised by João Costa in the fol-
lowing year [Cos06]. The core FD-FDTD program is
developed in Fortran 90 with MPI and C subroutines.
The FD-FDTD simulation supplies a large amount of
output data with D,E and H values for each space
grid location x, y, z and time step t. The produced
data is stored in a number of textual ASCII files.
Where each output file represents a single simulation
time step and contains the displacement and electro-
magnetic field values for the entire grid space.

In the parallel FD-FDTD in-house software im-
plementation the computation domain is divided
among the available processors. Currently the work-
load is spread according to the z axis of the sim-
ulation grid space. This means one CPU calculates
a certain volume of the FD-FDTD space for the
complete simulation time range. The total amount of
output files produced equals to tmax×nCPUs, e.g. the
algorithm execution for 10 time steps performed on 2
processors will result in 10×2 = 20 output data files.
The real-world simulations are run for at least 5000
time steps on 16 CPUs. In this case a single file’s size
reaches 250 MB and the total amount of disk space
required is 5000× 16× 250 = 19.07 TB. Moreover the
time needed to output a single text file drastically
increases and can take up to 30 minutes.

Summarising all the above conditions states that
one FD-FDTD simulation can easily extend to many
days. The current procedure of data production and
storage in ASCII format was considered non-optimal.
This paper analyses major scientific data formats
available and presents a novel approach for the FD-
FDTD data output and storage based on the Hierar-
chical Data Format 5 (HDF5) functionality.

II. SCIENTIFIC DATA PROCESSING

A. Current Status and Future Forecast
The scientific data volumes are doubling each sub-

sequent year. There is a strong need for interactive

data analysis tools, that would be able to cope ef-
fectively with the increasing amount of information.
Currently there exists a gap in the human-machine
interface. A scientist becomes confused by the huge
volume of information. He needs to be put back in
control of his data. The advanced information analy-
sis utilities are required for better data manipulation.
Sophisticated complexity and super-linearity of data
analysis algorithms as well as the low I/O band-
width growth in comparison to the storage space
increase are the trends of the contemporary data
processing.

Jim Gray et al. [GLNS+05] predict a development
of data centre ideology, where a scientific computing
resource centre will keep all the necessary data and
programs required for data analysis. Every scientist
will have a designated workspace area on the data
centre’s server called myDB. Another important no-
tion in the future data processing is a smart notebook –
a mechanism providing efficient exploration, capture,
organisation, analysis, visualisation and publication
of data. Using the smart notebook scientists will be
able to manipulate their data stored in the computing
centre by means of the service-based communication.

Metadata will play an important role in the devel-
opment of novel information analysis tools. Metadata
– is a descriptive information about data containing
attributes, names, units, precision, accuracy, data lay-
out and especially data lineage: the way the informa-
tion was measured, acquired and computed. Many
multimedia formats such as JPEG, PDF and MP3
already support metadata. Metadata will provide
an intermediate layer bridging the raw data and
analysis software guided by scientists.

Special-purpose scientific formats have emerged in
the last decade. They provide data models for the
representation of numerical data arrays and relation-
ships among them. The data processing based upon
these formats usually follows a file-at-a-time proce-
dural data analysis. In most cases scientific formats
pass the information to programming languages for
further processing. This enforces the filter-then-analyse
approach in operation with data. The raw data has
to be gathered in a temporary storage buffer, sorted,
filtered for the effective information and then anal-
ysed.

On the other hand the commercial world pro-
vides a data manipulation solution standardised
around the Relational Database Management Sys-
tems (RDBMS) and Structured Query Language
(SQL). Application of database systems for data pro-
cessing tasks offers a wide range of benefits including
automatic parallelism, indexing, non-procedural data
access and look-up capabilities, data independence,
federation, replication and back-ups, as well as flexi-
ble organisation, automatic design and management



3

options.
Impedance mismatch existing between the relational

database model and the object-oriented model of
programming languages will significantly reduce
within the next decade. New highly flexible in-
formation systems will arise during the confluence
of databases, file systems and object-oriented pro-
gramming languages. This evolution will bring the
modern database performace features and scientific
format data representation models together and will
result in highly efficient information analysis prod-
ucts. It is expected that scientific data formats will
be included into commercial database systems as
standard data types.

The first step towards the efficient data processing
is a joint application of scientific data format and op-
eration parallelism provided by the Message Passing
Interface (MPI).

B. Modern Formats
There was a number of data formats developed

especially for scientific use:
Network Common Data Form (NetCDF) was de-

signed at the Unidata Program Center and aimed for
manipulation of atmospheric science data.

Flexible Image Transport System (FITS) was im-
plemented at NASA Goddard Space Flight Center
with the main intention to store astronomical data
sets.

Portable Binary Data Format (PDB) was devel-
oped at the Lawrence Livermore National Laboratory
(LLNL) for general usage in physical research. Later
it was adopted by the U.S. Department of Energy.

Hierarchical Data Format (HDF) was created by
the National Center for Supercomputing Applica-
tions (NCSA) at the University of Illinois at Urbana-
Champaign (UIUC). It was first applied for the in-
ternal data exchange. In the later time NASA used it
for the Earth Observing System programme.

III. HIERARCHICAL DATA FORMAT 5
Hierarchical Data Format 5 (HDF5) was se-

lected for the application in the in-house FD-FDTD
software. Bearing comparable and better perfor-
mance characteristics with the other scientific for-
mats [Pou02], HDF5 excels in higher flexibility and
much broader feature support [Gro02].

HDF5 places no limit upon data file size and
number of objects in a file. The format provides
C, C++, Java and Fortran application programming
interfaces (APIs). The versatile data model allows
to express other formats in terms of HDF5. Data
stored in this format might be described by common
and user-defined metadata. Virtual File Layer (VFL)
offers efficient standard, parallel and network I/O

as well as diverse storage media support. A number
of advanced operations on data is possible during
the I/O process: data type and location change,
subsetting and optional separation of meta- from
raw data. There exist data compression, extensibility
and chunking strategies for the information storage.
HDF5 provides a wide selection of pre-defined data
types.

Fortran 90 programming language support, par-
allel data access capabilities and flexibility of data
structure design were the most important features
that have influenced the research group’s decision
to apply HDF5 for the FD-FDTD data manipulation
activities.

IV. OUTPUT FILE DESIGN IN HDF5
Storing FD-FDTD data in textual ASCII form was

considered extremely inefficient. A new file structure
in terms of HDF5 has to be designed to replace the

The original ASCII file represented one time step
of the FD-FDTD simulation and contained the dis-
placement Dn

(x,y,z) and electromagnetic field values
En

(x,y,z) and Hn
(x,y,z) for the entire grid space.

Table I shows the column-wise organisation of the
initial output file. The first 3 columns are obligatory
since they specify the exact location in the grid
space. They hold x, y and z cartesian coordinates. The
following 9 columns intended to store the displace-
ment and electromagnetic field values are optional.
The number of output field values as well as the
spacial positions are set according to the simulation
requirements.

Space Coordinates Field Values

x y z Ex · · · Hz

1 1 90 -0.15396E+10 · · · -0.15041E+12
...

...
...

...
...

189 467 95 0.13878E+08 · · · 0.13895E+10

TABLE I
OUTPUT DATA FILE STRUCTURE

The major building blocks of the HDF5 format are:
Group – is a container structure organising

datasets and other groups.
Dataset – is an n-dimensional data array of any

type. This is the main entity for data storage.
Datatype – is a structure specifying the nature and

character of raw data in a dataset.
Dataspace – is an entity setting the data layout and

indicating its intended usage.
Format’s groups and datasets are similar to the

Unix notions of directories and files. It is also possible
to create links between HDF5 objects to enable data
sharing.



4

A complete volume of displacement and electro-
magnetic field values for one time step is kept in
a single HDF5 dataset. Cartesian coordinates x, y, z
describing the spatial domain of the simulation are
represented by a three-dimensional dataspace. While
there might be up to 9 different field values as-
signed to a single spacial location, a user-defined
one-dimensional array datatype is created to hold
the calculated field parameters. The original idea of
separating the stored data according to the time step
value was left intact. A single HDF5 data file con-
tains all the information referring to one time step.
There was an option to output the entire spatial and
time domain data into one file, but it was rejected
because of a potentially large resulting file size. A
new file consists of a default root group “/” with a
custom group “MyGroup” created within it. This is
done for flexibility reasons to allow future ordering
and relocation of raw data inside a file. A string
attribute “MyAttribute” containing the textual data
description concludes the HDF5 file contents.

HDF5 library features as data chunking, shuffling
and compression were enabled to provide better
data manipulation and disk space usage. Chunking
separates the raw data kept in a single dataset into
a number of equal parts. This stimulates fast partial
access to the information and more importantly pro-
vides a mechanism for parallel operation upon the
data. Shuffling is an auxiliary option, which allows
to reach better compression levels. Similarly to the
interleaving approach it re-orders the byte sequence
of data providing a higher compression ration. Since
the displacement and electromagnetic field informa-
tion is of numeric character it has a relatively high
locality, which makes shuffling especially useful.

Each HDF5 output file is compressed with a GNU
zlib algorithm. Moderate encoding level of 6 is a
trade-off between the speed of output production
and amount of storage space usage. When applying
shuffling a possible concern might be the additional
time required for excessive byte permutations. How-
ever, a series of practical experiments conducted by
the HDF Group in [Gro04] states that shuffling and
bzip2 compression operation needs less amount of
time than the sole bzip2 data encoding. This work
also indicates 5% compression improvement for 64-
bit float data and 10% for 32-bit.

V. MODIFICATION OF FD-FDTD SOFTWARE

Pseudocode in the Algorithm V.1 indicates the
main steps of the HDF5 output file production. The
notation used within the pseudocode is as follows.
Parameter i identifies the HDF5 Fortran interface.
An HDF5 file, group, dataspace and dataset are
represented with variables fh5, g, s and d respec-
tively. Custom file and memory datatypes are tfile

and tmem. Parameter l specifies the dataset creation
property list, while rchunk, rshuffle and rzlib are the
chunking, shuffling and compression filters applied
to it. Parameters wdata and rdata are the auxiliary
input and output raw data buffers. Finally D, E and
H denote the displacement and electromagnetic field
values.

1: initialise HDF5 Fortran interface i
2: create new file fh5, group g, 3D dataspace s
3: create file array datatype tfile, memory array

datatype tmem

4: modify dataset creation property list l to use
filters rchunk, rshuffle, rzlib

5: create dataset d ∈ g ∈ fh5 ← s, tfile, l
6: create output and input data buffers wdata, rdata
7: fill in wdata←D, E, H
8: write wdata→ fh5 using tmem

9: read fh5 → rdata using tmem

10: close l, s, d, g, fh5, i

Algorithm V.1: HDF5 Output File Production

The novel output algorithm proceeds in the follow-
ing manner. The HDF5 Fortran interface is initialised
at the beginning of the data output process. A new
HDF5 file fh5 is created for each time step of on each
CPU. A group g is constructed within the default
root group in the file. Three-dimensional dataspace
s sets the data layout for a future dataset d. Two user-
defined one-dimensional array datatypes tfile and
tmem are prepared next. The platform-independent
file datatype tfile is intended for HDF5 file read-
ing and writing operations, whereas the memory
datatype tmem is different for each specific computer
architecture. It supports the data transfer operations
in memory.

A default dataset creation propertty list l has to
be modified to pass the raw data through chunking,
shuffling and compression filters rchunk, rshuffle and
rzlib before output. Finally the dataset d, the main
container keeping the simulation data, is created
using the dataspace s, file array datatype tfile and
the altered dataset creation property list l. An output
data buffer wdata is filled in with the calculated
D, E and H values prior to the final data writing
into the HDF5 file. The memory datatype tmem has to
be applied for the writing procedure. The intermedi-
ate data buffering is required for a more efficient data
output. In case of bufferisation the entire simulation
data set is written into the file in one operation,
which is faster than multiple output procedures for
each grid space location.

The dataset reading from a file is optional. Sim-
ilarly to the writing operation the information is
read from a file using the memory datatype tmem

and is stored into an input buffer rdata. Reading is



5

currently used for the verification purposes of cor-
rect file infill. Access to the current dataset creation
property list l, dataspace s, dataset d, group g, file
fh5 and the Fortran interface i should be terminated
in the end of data output to release the computing
resources.

The FD-FDTD in-house software was modified to
accommodate the HDF5 output procedure described
in the Algorithm V.1. To ease the program debugging
each HDF5 file production subroutine is supplied
with a status message. The program capability to
output files in ASCII format was left intact. It is
possible to specify the desired data output format be-
fore the simulation begin. The dual output capability
will be important for the output format performance
experiments.

VI. FUTURE WORK

A. Project Development

An extensive testing procedure is required to mea-
sure the FD-FDTD output performace. The existing
ASCII and HDF5 formats should be compared ac-
cording to the output speed and disk space usage.
This could be done gradually increasing the amount
of simulation output. A program could be executed
producing no output at all, Ez only, Ex,y,z and
Dx,y,z, Ex,y,z and Hx,y,z .

The FD-FDTD data has to be post-processed to
produce either static or animated electromagnetic
signal representation in time domain. This is done
for the verification of simulation correctness. The
post-processing utilities will be developed in Fortran
using the HDF5 library for parallel data access.

Since the FD-FDTD simulations demands large
amount of resources it is usually run on High Per-
formance Computing (HPC) systems. The new FD-
FDTD software has to be ported to Horace and
IBM BlueGene/L (BGL) supercomputers the research
group works with. The successfull code porting de-
pends on the HDF5 library installation onto the HPC
machines. Significant difficulties were encountered
while attempting to setup HDF5 on the BGL system.

Another possible project improvement might be
a development of intelligent output algorithm simi-
lar to the optimised implementation of the Lanczos
method [SHS07]. Where only valid D, E and H field
parameters will be output. In this case the output
time will be saved on all zero field values.

B. Conclusion

A novel efficient data storage approach for the
FD-FDTD electromagnetic simulation was developed
within this project. The HDF5 scientific data format
was selected for keeping the computational raw
data. The preference to HDF5 was given because

of its Fortran interface, extensive selection of data
handling features and most importantly parallel ac-
cess support. This research shares the practise and
experience of HDF5 application to electromagnetic
computation purposes which could be widespread
to any other scientific area requiring storage and
efficient manipulation of large amounts of raw data.

REFERENCES

[Cos06] João Costa. Application of high performance com-
puting to FDTD for UWB systems, September 2006.

[GLNS+05] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex
Szalay, David J. DeWitt, and Gerd Heber. Scientific
data management in the coming decade. ACM SIG-
MOD Record, 34(4):34–41, January 2005.

[Gro02] The HDF Group. HDF5 wins 2002 R & D 100
award. Technical report, The National Center for
Supercomputing Applications, University of Illinois
at Urbana-Champaign, 2002.

[Gro04] The HDF Group. Performance evaluation report:
gzip, bzip2 compression with and without shuffling
algorithm. Technical report, The National Center for
Supercomputing Applications, University of Illinois
at Urbana-Champaign, 2004.

[Pou02] Elena Pourmal. FITSIO, HDF4, NetCDF, PDB and
HDF5 performance, some benchmarks results. Science
Data Processing Workshop, February 2002.

[SHS07] Jürgen Schnack, Peter Hage, and Heinz-Jürgen
Schmidt. Optimized implementation of the Lanczos
method for magnetic systems. Journal of Computa-
tional Physics, 2007.

[Thi06] Arnaud Thiry. Efficient FDTD for Broadband Sys-
tems. PhD thesis, University of Manchester, School
of Computer Science, Kilburn Building, Manchester
M13 9PL, United Kingdom, May 2006.

[Yee66] Kane S. Yee. Numerical solution of initial bound-
ary value problems involving Maxwell’s equations
in isotropic media. Antennas and Propagation, IEEE
Transactions on [legacy, pre-1988], 14(3):302–307, 1966.


	Introduction
	Scientific Data Processing
	Current Status and Future Forecast
	Modern Formats

	Hierarchical Data Format 5
	Output File Design in HDF5
	Modification of FD-FDTD Software
	Future Work
	Project Development
	Conclusion

	References

